According to the graphs, we can know that:
Chautauqua
county is with the most asthma
patients. After that, the percentage decreased until 2009.Steuben
and
Chemung
were increasing.Jefferson
,
St. Lawrence
, Franklin
and Essex
are also with higher percentage of asthma patients.Bronx
, Queens
and Erie
, are also with a higher percentage of asthma
patients.asthma_now_county_df1 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2003) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df1, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df2 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2004) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df2, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df3 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2005) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df3, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df4 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2006) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df4, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df5 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2007) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df5, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df6 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2008) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df6, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df7 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2009) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df7, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df8 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2010) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df8, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df9 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2011) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df9, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map
asthma_now_county_df10 =
brfss_air_df %>%
mutate(
fips = str_c(state_code.x,county_code)
) %>%
group_by(state_code.x, county_code,county,fips, year) %>%
filter(year == 2012) %>%
count(
county,asthma_status
) %>%
mutate(
percent = n/sum(n)
) %>%
filter(asthma_status == "1") %>%
spread(asthma_status, percent)
asthma_now_county_plot_map =
plot_usmap(regions = "county", include = c("NY"), data = asthma_now_county_df10, values = "1", label = TRUE, label_color = "White") +
scale_fill_continuous(
low = "white", high = "Orange", name = "Percentage", label = scales::comma, limits = c(0.05,0.17)
) +
theme(legend.position = "right")
asthma_now_county_plot_map