---
title: "NY NOAA Dashboard"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
source: embed
css: bootstrap.css
---
```{r setup, include=FALSE}
library(flexdashboard)
library(p8105.datasets)
library(tidyverse)
library(plotly)
```
```{r}
data("ny_noaa")
ny_noaa_tidy =
ny_noaa %>%
janitor::clean_names() %>%
separate(col = date, into = c('year','month','day'), sep = "-" , convert = TRUE) %>%
mutate(
month = month.name[month],
prcp = prcp / 10,
tmax = as.numeric(tmax),
tmin = as.numeric(tmin),
tmax = tmax / 10,
tmin = tmin / 10
)
```
Column {data-width=650}
-----------------------------------------------------------------------
### Chart Aļ¼Minumum temperature vs Maximum temperature at January in different station from 2000 to 2010
```{r}
ny_noaa_tidy %>%
filter(month == c("January")) %>%
filter(year > 2000) %>%
group_by(id, year, month) %>%
mutate(text_label = str_c("year: ", year, "\nid:", id)) %>%
plot_ly(x = ~tmin, y = ~tmax, text = ~text_label, color = ~year,
alpha = .5, type = "scatter", mode = "markers",colors = "viridis") %>%
layout(title = "Minumum temperature vs Maximum temperature at January in different station from 2000 to 2010",
xaxis = list(title = "Minimum Temperature C"),
yaxis = list(title = "Maximum Temperature C")
)
```
Column {data-width=350}
-----------------------------------------------------------------------
### Chart B: Snowfall(mm) record in January from 2000 to 2010
```{r}
ny_noaa_tidy %>%
filter(month == c("January")) %>%
filter(0 < snow ) %>%
filter(snow < 100) %>%
filter(year > 2000) %>%
mutate(
year = as.factor(year)
) %>%
plot_ly(x = ~year, y = ~snow, color = ~year,
alpha = .5, type = "box",colors = "viridis") %>%
layout(title = "Snowfall(mm) record in January from 2000 to 2010",
xaxis = list(title = "year"),
yaxis = list(title = "Snowfall(mm)")
)
```
### Chart C: average precipitation(mm) in January from 2000 to 2010
```{r}
ny_noaa_tidy %>%
filter(month == c("January")) %>%
filter(year > 2000) %>%
group_by(year) %>%
summarize(
prcp_average = mean(prcp, na.rm = TRUE)
) %>%
mutate(text_label = str_c("year: ", year, "\nprcp_average(mm):", prcp_average)) %>%
plot_ly(x = ~year, y = ~prcp_average,
alpha = .5, type = "scatter", text = ~text_label, mode = "lines",colors = "viridis") %>%
layout(title = "Average precipitation(mm) in January from 2000 to 2010",
xaxis = list(title = "year"),
yaxis = list(title = "average precipitation(mm)")
)
```